当前位置: 首页>博士论文>资源详情
金刚石表面处理对浅层NV中心自旋相干性影响
中文摘要

 近几年,随着硬件系统在技术上的不断突破,计算机技术的发展日新月异。如今的社会,人们对于计算机的计算能力以及对数据的处理能力的要求越来越高,而经典计算机在这两方面已经逐渐到达了瓶颈,于是物理学家、数学家们开始探索“非经典”方法来试图解决这个问题。因此,量子信息科学逐渐成为了研究的热点。量子信息科学是使用量子力学的方法来处理信息的科学。准确来说,其是一门交叉科学,涉及到包含量子物理学等的多门学科。随着量子信息科学的发展,量子计算机的概念也被人们提出,这就涉及到量子元件,也就是硬件的支持,于是固态量子体系便成为了重要的研究方向。 金刚石NV中心是一种非常有潜力的固态量子体系。它是一种金刚石中替位氮(N)原子和最近邻位的碳空位(V)组成的复合结构,属于一种缺陷。其具有许多优异的特点,比如良好的生物兼容性,光学稳定性,室温下有很长的弛豫时间和相干时间等,在多方面领域,尤其是量子精密测量与量子计算方面,被广泛地应用。不同于其他固态量子体系需要诸如低温、光学束缚等各种实验条件的限制,金刚石NV中心体系可以在室温下进行各种自旋态也就是量子态的操控,很长的相干时间也给多次操作和长时操作提供了可能。因此,金刚石NV中心体系成为了越来越多科研者们的研究对象。 本论文研究了金刚石NV中心作为应用器件所必须解决的问题,主要包括了如下几个方面: 第一章节:我们先介绍了固态量子体系,尤其是金刚石NV中心体系的发展和研究背景。然后我们介绍了金刚石NV中心的基本结构与光谱性质等物理特性。然后我们介绍了根据NV中心特性而设计搭建的实验平台——激光共聚焦系统、微波系统与磁场系统。最后介绍了本论文的研究选题的背景以及主要研究方向和内容。 第二章节:我们先分析了将金刚石NV中心用于实际应用过程中存在的问题。然后详细介绍了我们利用微纳加工技术和微纳加工平台仪器对块材金刚石表面进行处理的方法,尤其是表面刻蚀技术与表面沉积技术。最后总结了我们利用微纳加工技术做金刚石表面处理的特点与经验。 第三章节:我们实验组在金刚石中制备NV中心的方法。在纳米金刚石中,我们主要介绍了NV中心的特点以及如何通过高温退火的方法来延长相干时间。在块材金刚石中,我们主要介绍了利用离子注入的方法来制备高纯电学级金刚石中的NV中心,如何改善注入得到的NV中心的相干时间等自旋性质等。然后我们着重介绍了如何利用表面掩膜和曝光技术以及刻蚀技术来制备出浅层的NV中心阵列。我们还研究了注入得到的NV中心的相关性质:单光子性、Rabi振荡、Ramsey条纹、自旋回波Spin Echo、相干时间Coherence Time等等。并且我们给出了测量这些相关性质的方法,比如对应的微波脉冲序列等。 第四章节:我们使用了等离子体刻蚀技术和表面涂抹液态物质技术来研究金刚石中NV中心退相干与深度的依赖关系,以及外加自旋与表面自旋对于退相干作用的贡献大小。经过连续的等离子体刻蚀,金刚石中的深层的NV中心以纳米量级的速度靠近金刚石表面。每一次刻蚀结束,我们都在金刚石表面分别涂抹上富含大量电子自旋和核自旋的液体,来进一步探究深度依赖的退相干与不同种类的自旋之间的相互作用关系。我们最终的研究结果表明,当利用金刚石NV中心来做外自旋探测时,表面自旋的影响并不能被完全忽略。而外加自旋对NV中心退相干贡献最大的深度,我们称之为特征深度,这个深度在距离金刚石表面大致6 nm左右。这个发现不仅对利用NV中心探测外自旋这一应用提供了NV中心深度选取的依据,还给出了降低NV中心退相干的重要参考。 第五章节:我们首先介绍了金刚石NV中心作为应用器件的特色和潜力。然后提出了一种可用于器件钝化和封装的表面涂层技术。这种表面涂层技术,是利用ALD技术在金刚石的表面沉积一层氧化物保护涂层来增强金刚石中浅层NV中心的自旋性质的技术。这种表面涂层技术有诸多优点,其不仅氧化物保护涂层的厚度可控,还不会对金刚石的表面造成损伤,并且有可逆性。对于浅层NV中心自旋性质的改善,也比较明显:当氧化物保护层的厚度适中时,相干时间基本保持不变,弛豫时间和自由衰减演化时间都有大幅度的提升。这种表面涂层的技术有望给固态量子体系制造成器件过程中的钝化和封装提供技术支持。 第六章节:对本论文的主要工作做出总结,对未来的研究工作做出展望。 关键词:固态量子体系,金刚石,NV色心,自旋操纵,相干性质,表面处理,等离子体刻蚀,表面涂层

英文摘要

 Nowadays, computer technology presents great progress with the development of hardware systems. The demand of high abilities of computing and data processing have been increased in recent years. However, classical computers have hit plateaus in the two abilities, so physicists and mathematicians are exploring “non-classical” methods to solve the problems. Therefore, quantum information, a technology of processing information by using quantum mechanical systems, has been a popular issue. More precisely, quantum information is a new field of science and technology, combining a lot of subjects like quantum physics etc. With the development of quantum information science, the concept of quantum computer has also been proposed, which involves the quantum components, that is, hardware support, so solid-state quantum systems have become an important research direction. The diamond NV center is a very promising solid state quantum system. It is a composite structure composed of a substitutional nitrogen (N) atom in diamond and a carbon vacancy (V) in the nearest ortho position, which is a defect. It has many excellent features, such as fine biocompatibility, optical stability, long relaxation time and coherence time at room temperature, etc., and is widely used in many fields, especially quantum precision measurement and quantum computing. Different from other solid state quantum systems requiring various experimental conditions such as low temperature etc., the diamond NV center system can perform to manipulate various spin states, i.e., quantum states at room temperature, and the long coherence time provides the possibilities for multiple quantum operations and long-term quantum operations. Therefore, the diamond NV center system has been researched by more and more researchers. This thesis introduces the investigation for solving the problems of making diamond NV center a solid state quantum device, including the following aspects: The first chapter: We first introduced the development and research background of solid state quantum systems, especially the diamond NV center system. Then we introduced the physical properties of the basic structure and spectral properties of the diamond NV center. Then we introduced the experimental platform made up of laser confocal system, microwave system and magnetic field system, which was designed according to the characteristics of the NV center. Finally, the content this thesis is outlined. The second chapter: We first analyzed the problems in using diamond NV centers for applications. Then, the methods of bulk diamond surface treatments by micro-nano processing technology and micro-nano processing platform instruments were introduced in detail, especially the surface etching technique and surface deposition technique. Finally, we summarized the characteristics and experience of our diamond surface treatment by using micro-nano processing technology. The third chapter: We introduced a method for preparing NV centers in diamonds. In nanodiamonds, we mainly introduced the characteristics of the NV center and how to extend its coherence time by high temperature annealing. In bulk diamond, we mainly introduced the method of ion implantation to prepare the NV center in high-purity electric grade diamond, and also included the NV center yield, methods to improve the coherence time of the implanted NV centers. Then we focused on how to use a surface mask and exposure technique and etching technique to prepare a shallow NV center array. Then we also studied the related properties of the implanted NV center: single photon, Rabi oscillation, Ramsey fringe, spin echo, coherence time and so on. And we gave methods to measure these related properties, such as using the basic microwave pulse sequence. The fourth chapter: We used plasma etching technique and surface-coating liquid material technique to study the dependence of diamond NV center decoherence and depth, and the contribution of external spins and surface spins to decoherence. After continuous plasma etching, the deep NV center in the diamond approaches the diamond surface at nanometer scales. At the end of each etch, we applied a large amount of electron spin and nuclear spin on the diamond surface to further study the interaction between depth-dependent decoherence and different kinds of spins. Our final research results showed that the surface spin effects could not be completely ignored when using the diamond NV center for external spin detection. The depth at which the applied spin contributes the most to the NV center decoherence is called the charateristic depth, which is about 6 nm from the diamond surface. This finding not only provides a basis depth for the NV center used for detecting external spin, but also provides an important reference for reducing the decoherence of the NV center. The fifth chapter: We first introduced the features and potential of the diamond NV center as an application device. A surface coating technique that could be used for device passivation and packaging is then proposed. This surface coating technique was a technique that used an ALD technique to deposit an oxide protective coating layer on the diamond surface to enhance the spin properties of shallow NV centers in diamond. This surface coating technique had many advantages. It not only controled the thickness of the oxide protective coating layer, but also did not damage the diamond surface and was reversible. For the improvement of the spin properties of shallow NV centers, it was obvious that when the thickness of the oxide protective layer was appropriate, the coherence times remained almost the same, and the relaxation times and the free induced evolution times were greatly improved. This surface coating technique was expected to provide technical support for passivation and packaging for solid state quantum system devices. The sixth chapter: We summarized our work and then presented the related work prospects. Keywords: solid quantum system, diamond, NV center, spin control, coherence property, surface treatment, plasma etching, surface coating

作者相关
主题相关
看过该书的人还在看哪些书